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ABSTRACT 
 
 
 
 
 

KEYWORDS:   Robot manipulation, Machine learning, Neural networks, Degrees of freedom, 

Sequence prediction, Long short term memory network, Encoder, Decoder 

 

Robot manipulation is an upcoming area in the field of robotics. A basic task of any robotic 

application is picking and placing objects and interacting with the environment which forms the 

fundamental tasks in manipulation. Intelligent robot manipulation involves using algorithms and 

machine learning approaches to manipulate and make the robot arm decide which method can be 

used to perform various tasks. Machine learning algorithms and techniques involve training neural 

networks on a dataset to learn features in an image, predict sequences, classify images and other 

tasks that requires intelligent learning. 

In this project an attempt is made to understand the physics of the simulation environment for 

making a robot build and break a tower of blocks repeatedly. The robot is manipulated to perform 

push and grasp actions on blocks of different color. 

Further, the project involves obtaining a dataset of RGB images containing various positions and 

orientation of the blocks when it is being broken from simulation environment and using it as the 

dataset to predict the subsequent sequences by using an architecture combining long short term 

memory neural network with convolutional encoder down-sampling layers and convolutional 

nonlinear decoder-up sampling layers. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 
 
 

In the recent times, there has been a substantial development in the field of Robotics and Artificial 

Intelligence. The ability to play around and interact with the surrounding is the basic quality of all 

beings. Robots are almost able to interact with environment like humans and animals can do. Robot 

manipulation refers to ways robots interact with the environment. 

   

While robots interact with the objects around by grasping or pick and place, humans use a variety 

of methods to interact and manipulate objects in the environment. This restricts the number of 

tasks and complexity of tasks that can be performed by the robots. As much it is important to 

identify the type and number of tasks that can be achieved by robots, it is also important to find 

the best way to reach at the solution. Humans can understand and predict the best way to attain the 

solution to reach and manipulate objects very easily, in fact in just a matter of seconds they can 

easily find out the best answer. In the contrast, a robot cannot identify its environment very easily, 

it requires lot of training and understanding to be able to arrive at a solution. Although robots can 

be very accurate and efficient at doing any given task, they still require lot of learning at the initial 

development stages.  

 

Intelligent Robot Manipulation refers to methods and practices where a robot achieves best 

solution while manipulating and interacting with objects and environment by using suitable 

algorithms to learn and train. Intelligent way of manipulating the robots involves first developing 

an efficient method to arrive the desired goal then implementing that method to make the robot 

interact in real time. 
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Robot manipulation is a field with lot of applications. Robots can help humans in doing day to day 

activities. Just as hands are an important and integral part for humans, Robotic arm acts as a 

primary means of interacting with the environment. Specially designed Robots can assist disabled 

to manipulate or carry objects and do daily chores. Nuclear robots can carry harmful and toxic 

waste using their arms. Further, specialized applications can be found when a robot is able to 

understand the physics of the environment and predict future sequences. The above can be achieve 

by using machine learning. With above implementation, robots can help in assisting more complex 

tasks like preventing fall of any object or trajectory of any object for locating. The basic idea can 

be further implemented in more complex modelling and training. The combination of Robot 

manipulation with time sequence prediction using recurrent neural networks is foundation to 

establishing a Humanoid robot. Although the speed of understanding and computational capability 

of human brain cannot be compared with that of a robot, this combination can be compared to the 

connection between human brain with its memory of environment and object and hands picking 

up objects. Human like accuracy of detection and prediction can be achieved by using various 

modified type of recurrent neural networks. 

 
 

 

In this project, a 7 DOF Panda arm of Franka Emika Robot is simulated in Gazebo Simulation 

environment in integration with ROS and RViz. The Panda robot consists of an arm and a gripper 

attached to it. The panda robot is manipulated to construct a tower of blocks of different color and 

break it repeatedly. In this process, the pose and orientations of the blocks are recorded and used 

as a dataset to train and test a recurrent neural network to predict the possible future state of the 

blocks. The project is aimed to be implemented in real time on Franka Emika Panda Arm with 7 

Degrees of Freedom for manipulating, testing the sequence prediction.     
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CHAPTER 2 
 
 

LITERATURE REVIEW 
 
 

The list of Prerequisites needed for doing this project are discussed in this section. The important 

know-hows include understanding Franka Emika Panda Robot and its characteristics, exploring 

its Forward and Inverse Kinematics and Dynamics, understanding about various simulation 

software packages used, understanding what is a Neural network, Convolutional neural network, 

Recurrent neural network, Long short term memory network, understanding the architecture of 

various networks that are used and knowing the ways to interpret and implement it, understanding 

about programming languages used, hardware specifications of computer for running the 

simulation. 

 

2.1.1 Franka Emika Robot  

 

 
Fig 2.1 Franka Emika Panda Robot 

 (Ref. www.franka.de) 
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Franka Emika Panda Robot is a product of German engineering, inspired by human agility and 

sense of touch. It is a very sensitive and an extraordinary tool for manipulating tasks. It has 7 

Degrees of freedom with torque sensors build on all the 7 axes which makes easily maneuverable. 

It is a bench-mounted robot with integrated joint modules. It has an ability to learn and train and 

can be used for performing a multitude of tasks. 

The key features: 

 7 DOF 

 Sensors in all 7 axes 

 Ability to learn and train 

Why FRANKA EMIKA?

 

Franka Emika Panda arm has 7 DOF with sensibility in all 7 axes. It is more economical and has 

high sensitivity as compared to other robot arms. It can be easily used to manipulate objects and 

interact with the environment. It can be made helpful in working in Nuclear environments for 

moving or disposing harmful objects and in factories for moving, pushing, lifting objects and it 

can also be useful in agricultural fields to pick tomatoes or mushrooms. It can be controlled through 

Master-slave configurations, has the ability to teach and learn, easy to integrate with ROS. Franka 

panda robot can be simulated in Gazebo simulation by integrating it with RViz for motion 

planning, tracking and visualizing using markers and also can be simulated in Vrep simulation 

environment. Franka panda robot is setup on a stationary working cell assembly with a Kinect 

camera mounted. In this setup, multiple Franka Panda robots can be mounted in parallel and 

controlled by master robot.  
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Fig. 2.2. Franka Emika panda robot setup 

 

2.1.2 Robot Kinematics and Dynamics 

 
Kinematics is study of motion of objects without considering the cause of motion. Robot Kinematics 

is study of robot manipulator motion without including forces, moments which are the cause of 

motion. It deals with the study of interconnection between the links and joints to analyze the position, 

velocity and acceleration of each. The motion parameters are position, velocity, acceleration, pose 

(position and orientation). There are two types of defining spaces in Kinematics: Joint space and Task 

space. The transformations between the two spaces can be decomposed into rotation and translation. 

Joint space encompasses the angular coordinates and task space encompasses the Cartesian 

coordinates like x, y, z.  

The two types of Kinematics are forward kinematics and inverse kinematics, which specifies the 

relationship between the end-effector coordinates in task spaces and joint coordinates in local joint 

spaces. In forward kinematics, we specify the end-effector coordinates in terms of local joint 

coordinates and inverse kinematics, joint space coordinates are specified in terms of the end-effector 
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coordinates. A good robot kinematic model is essential to obtain Forward and Inverse kinematic 

solution. Denavit-Hartenberg method that uses four parameters is the most common method for 

describing the robot kinematics. These parameters ai-1, αi-1, di and θi are the link length, link twist, link 

offset and joint angle, respectively. A coordinate frame is attached to each joint to determine DH 

parameters. Zi axis of the coordinate frame is pointing along the rotary or sliding direction of the 

joints. 

Computing a forward kinematics solution is far easier than computing an inverse kinematics solution. 

The inverse kinematics solution might contain anomalies or singularities or multiple solutions. 

 

 

 
 

Fig. 2.3 Panda’s Kinematic Chain 
(Ref. www.franka.de) 
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Joint a(m)a(m) d(m)d(m) α(rad)α(rad) θ(rad)θ(rad) 

Joint 1 0 0.333 0 θ1θ1 

Joint 2 0 0 −π2−π2 θ2θ2 

Joint 3 0 0.316 π2π2 θ3θ3 

Joint 4 0.0825 0 π2π2 θ4θ4 

Joint 5 -0.0825 0.384 −π2−π2 θ5θ5 

Joint 6 0 0 π2π2 θ6θ6 

Joint 7 0.088 0 π2π2 θ7θ7 

Flange 0 0.107 0 0 

 

Table 2.1 D-H Parameters for Panda Robot 

(Ref. www.franka.de) 

 

2.2 Software/Package required for Simulation 

 

 ROS (Robot operating system) 

 Gazebo Simulation environment 

 V-Rep Simulation software 
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2.2.1 ROS (Robot operating system) 

 

 

 

 

 

 

 

 

 

Fig. 2.4 ROS overview 

(Ref. http://wiki.ros.org/) 

 

ROS is an open source meta-operating system software platform that helps in creating robotics 

application for software developers.  It provides hardware abstraction, device drivers, low-level 

device management, libraries, visualizers, message-passing, package management, and more. The 

ROS runtime "graph" is a peer-to-peer network of processes (potentially distributed across 

machines) that are loosely coupled using the ROS communication infrastructure. ROS implements 

several different styles of communication, including synchronous RPC-style communication 

over services, asynchronous streaming of data over topics, and storage of data on a Parameter 

Server.  

ROS is similar to Ubuntu with respect to publication of distributions. Each distribution is in 

relation with one of the Ubuntu version. ROS distribution is released every year in May. The 

distributions released in even years support LTS release of Ubuntu. ROS has an official website 

with documentation and tutorials for Beginner and intermediate level of user. It also offers tutorials 

for its supported inbuilt software like TF, RViz, MoveIt! 
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Framework of ROS:

ROS has three levels of concepts: File system level, Computation Graph level and the Concept 

level. It also has two types of names – Package Resource Names and Graph Resource Names. ROS 

resources that are present in a disk are covered by ROS Filesytem level concepts. It specifies details 

about Packages, Metapackages, Package manifests, Repositories, message types, Service types.  

In Computation Graph level, the computation graph is the peer-to-peer network of ROS processes 

that are processing data together. The basic Computation Graph concepts of ROS 

are nodes, Master, Parameter Server, messages, services, topics, and bags, all of which provide 

data to the Graph in different ways. 

In Community level, ROS resources and used for community use for exchange of knowledge and 

software. Distributions, Repositories, The ROS wiki, Bug ticket system, Mailings list, ROS 

answers and blogs. On a higher level, ROS core platform attempts to be architecture-agonistic.  It 

provides several different modes of communicating data (topics, services, Parameter Server). In 

order to know how these modes are named and how they are implemented, it is required to have 

higher level ROS concepts for building larger systems on top of ROS. There are stacks like 

common, common_msgs and geometry which provide higher level concepts: Coordinate 

Frames/Transforms, Actions/Tasks, Message Ontology, Plugins, Filters, Robot model, Cheat 

sheet. One more important thing to build larger systems on top of ROS are the ROS client libraries. 

ROS client libraries are collections of code that are very user friendly, it takes some of the concepts 

from ROS and makes them accessible via code. 

In order to understand Implementation of ROS, it is very essential to understand the connection 

between Master, Nodes, Parameter server, how connections are made to topics, messages and 

services. Although, for an end-user it is not mandatory to understand the concepts of 
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implementation, it is very much an essential detail for those who want to integrate their systems 

with ROS. In the nutshell, the most important and basic concepts one need to understand in ROS 

are ROS Master, ROS packages and dependencies, ROS nodes, ROS topics, ROS services and 

messages, ROS client server framework, ROS Publisher Subscriber framework, tools available for 

editing, debugging, recording, plotting, graphs.  

Starting ROS Master: 

The command used for starting ROS Master is as follows: 

$ roscore 

Fig. 2.5 Roscore 

Creating a ROS workspace (catkin workspace): 

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/

$ catkin_make

catkin_make command automatically creates CMakeLists.txt. Catkin workspace consists of 4 

directories namely build devel install src folders. 
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In order to source the setup, the below command is used: 

$ source devel/setup.bash

Creating a sample package with dependencies: 

The command below creates a sample package with dependencies. 

$ catkin_create_pkg beginner_tutorials std_msgs rospy roscpp 

 

Displaying ROS nodes list: 

The command below can be used for displaying node list: 

$ rosnode list 

Fig. 2.6 Rosnode list 

Displaying ROS topic list: 

The command below can be used for displaying topic list: 

$ rostopic list 
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Fig. 2.7 Rostopic list 

Displaying ROS parameter list: 

The command below can be used for displaying ROS parameter list: 

$ rosparam list 

Fig. 2.8 Rosparam list 
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The main list of characteristic steps of installing ROS/understanding ROS that are required for a 

beginner to understand the ROS framework and use it for a certain application are listed below: 

Step 1: Installing the appropriate version of Ubuntu 

Step 2: Installing the latest and stable version ROS (recent versions ROS Indigo or ROS Kinetic) 

Step 3: Installing and configuring ROS environment  

Step 4: Setting up ROS workspace (catkin or rosbuild) 

Step 5: Setting up file system and understanding the concept of rospackages 

Step 6: Understanding ROS server, nodes, topics, messages, services, parameter services 

Step 7: Understanding the tools in ROS: rqt graph, rqt plot  

Step 8: Understanding the concept of publisher and subscriber and implementing in python/C++ 

Step 9: Understanding the concept of server/client  

Step 10: understanding editing options, recording rosbags and other editing tools available 

Step 11: Understanding the tools inbuilt with ROS: TF, RViz, MoveIt!  

Step 12: Understanding complex concepts of ROS like building your own ROS package and 

running ROS in multiple system etc.  

Step 13: Starting to use ROS in user specific application or integrating ROS with a specific 

simulation software and building the catkin/rosbuild.  
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2.2.2 Gazebo Simulation 

Gazebosim is a simulation software that is capable of simulating population of robots in both 

indoor and outdoor environments. It has multiple physics engine, high-quality graphics and 

convenient programmatic and graphical interfaces.  

Features: 

 Dynamics Simulation 

 Advanced 3D Graphics 

 Sensors and Noise 

 Plugins 

 Robot Models 

 TCP/IP Transport 

 Cloud Simulation 

 Command Line Tools 

The various components of Gazebo are world files, model files, environment variables, gazebo 

server, gazebo client, Plugins. The world description file contains all the elements in a simulation, 

including robots, lights, sensors, and static objects. This file is formatted using SDF (Simulation 

Description Format), and typically has a .world extension. These files are used by Gazebo server 

to populate the world scene. 

The model files are subparts of world file, used for re-use and simplifying the world files. The 

model file also comes in SDF format. The models files can range from simple shapes to complex 

robots which consists of joints, links, visual, collision, plugins. The environment variables are used 

for communication between gazebo server and client and for locating files. The gazebo server is 

the workhouse of Gazebo, it simulates the world file using physics and sensor engine. The gazebo 
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client is used to visualize the various elements of the world file. Plugins provide a simple and 

convenient mechanism to interface with Gazebo. Gazebo uses a distributed architecture with 

separate libraries for physics simulation, rendering, user interface, communication, and sensor 

generation. Additionally, gazebo provides two executable programs for running simulations: 

gazebo server and gazebo client. 

Gazebo has an official website with well documented content and user friendly tutorials. The 

tutorials are wide ranging from beginner: understanding the overview to very high advanced 

version. Gazebo also offers further documentation through OSRF Bit bucket where many world 

files, model files can be accessed for free. 

Starting:  

The command used for starting Gazebo is as follows: 

$ Gazebo

 

 

 

   

 

 

 

Fig. 2.9 Gazebo Simulation Environment 
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The list of main steps involved in simulating a robot model in Gazebo are listed below: 

Step 1: Install ROS and follow the tutorials  

Step 2: Install the appropriate version of Gazebo  

Step 3: Install gazeboros packages and setup the ROS workspace  

Step 4: Create your own or import a robot model  

Step 5: Create a Gazebo world file and include the robot model and other components  

Step 6: Connect the robot with ROS and include the ROS control packages 

Step 7: Tele-operate the robot, add camera and other functionalities to the robot  

Step 8: Visualize the robot with RViz and use MoveIt! for motion planning 

Creating World file: 

There are two ways to create/populate world in Gazebo: The IDE of gazebo environment is very 

interactive, offers lot of menus and list of worlds, models, built in plugins to modify scene 

properties, physics GUI, editing and navigating the objects/models. 
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Fig. 2.10 Gazebo model editor 

(Ref. www.gazebosim.org) 

    1. Toolbar - Contains tools for editing the model 

    2. Palette - Also known as Left Panel. Has two tabs for editing the model. 

    3. Insert tab - Tools for adding links and nested models 

    4. Model tab - Allows editing model properties and contents 

Another way to create a world is by creating a world file following SDF specification.  

Sample example of world file is given below.  

<?xml version="1.0"?>

<sdf version="1.4">

<world name="default">

<include>

<uri>model://ground_plane</uri>

</include>

<include>
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<uri>model://sun</uri>

</include>

<model name="my_mesh">

<pose>0 0 0 0 0 0</pose>

<static>true</static>

<link name="body">

<visual name="visual">

<geometry>

<mesh><uri>file://my_mesh.dae</uri></mesh>

</geometry>

</visual>

</link>

</model>

</world>

</sdf>

Fig. 2.11 World file 

(Ref. www.gazebosim.org) 

Different models are added to the world file, position and orientation are specified for the models. 

The color/ visibility properties of the world can be set in the world file. Some of the physics 

properties can be set by using World file. 

Creating a model: 

One can add already existing models from online or build a model using URDF specification. 

Joints, links, physics, force parameters for different joints/links are specified in model SDF file. 

<?xml version='1.0'?>

<sdf version="1.4">

<model name="my_model">

<pose>0 0 0.5 0 0 0</pose>

<static>true</static>
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<link name="link">

<inertial>

<mass>1.0</mass>

<inertia>

<ixx>0.083</ixx> <!-- for a box: ixx = 0.083 * mass * (y*y + z*z) -->

<ixy>0.0</ixy> <!-- for a box: ixy = 0 -->

<ixz>0.0</ixz> <!-- for a box: ixz = 0 -->

<iyy>0.083</iyy> <!-- for a box: iyy = 0.083 * mass * (x*x + z*z) -->

<iyz>0.0</iyz> <!-- for a box: iyz = 0 -->

<izz>0.083</izz> <!-- for a box: izz = 0.083 * mass * (x*x + y*y) -->

</inertia>

</inertial>

<collision name="collision">

<geometry>

<box>

<size>1 1 1</size>

</box>

</geometry>

</collision>

<visual name="visual">

<geometry>

<box>

<size>1 1 1</size>

</box>

</geometry>

</visual>

</link>

</model>

</sdf>

Fig. 2.12 Sample SDF file 

(Ref. www.gazebosim.org) 

Setting up controllers: 
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The actuator of every robot has to be controlled. MoveIt! set-up assistant is used for setting up 

controllers for specific robot part simulated in Gazebo environment. MoveIt! is a package of ROS. 

MoveIt is an open source software used for mobile manipulation, motion planning, control and 

navigation, kinematics, 3D perception. It incorporates lot of applications, futuristic design of 

robots and widely used in domestic, industrial and Research and development areas. It is very easy 

to use and can be transported to any platform. MoveIt is also integrated with ROS and used mainly 

is a motion planning tool for ROS interface applications.  

Fig. 2.13   System Architecture for move group node 

(Ref. www. moveit.ros.org) 
The figure above shows the high-level system architecture for the primary node provided by 

MoveIt called move group. This node serves as an integrator: pulling all the individual components 

together to provide a set of ROS actions and services for users to use. 
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There are three ways of interfacing move group node. One is C++ move group interface, Python 

moveit-commander interface and using GUI RViz plug-in.  

RViz is a 3-D visualization tool for ROS. It is helpful in visualizing the sensor data and state 

information. Using RViz, one can view the current configuration of the robot or its virtual 

simulation. RViz can get and display the sensor content in ROS topics related to camera. 

RViz is a very useful tool used for setting up markers using ROS topics and visualize and track 

the motion and plan the configuration. RViz can be integrated with Gazebo and MoveIt for 

planning, visualizing motion trajectories. 

Starting:  

The command used for starting Rviz is as follows: 

$ rosrun rviz rviz

 

Fig. 2.14 RViz Simulation Environment 
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Motion planning:

After the controllers are set up, the next step will be to the desired target position. In order to 

achieve this the motion has to be planned. There are two widely used motion planning packages – 

ROS stack and OMPL (Open Motion Planning Library). An important tool for motion planning is 

solving the inverse kinematic chain. Fast IK solver is used for Gazebo ROS integration. 

 

2.2.3 V-REP 
 

V-REP is an integrated simulation development software which can be used to simulate multiple 

robotic models with easy programming with 6 different program languages, ROS interfaces, 

External API. 

 

Features:  

 6 Programming approaches (Embedded script, Add on, Plugins, Remote API client, ROS 

node, BlueZero node) 

 Powerful API framework for the 6 programming approaches 

 4 Dynamics/Physics engine (Bullet, ODE, Vortex, Newton) 

 Inverse and forward kinematics control 

 Customized dynamic control of particles 

 Collision detection and distance calculation 

 Cross platform and portable 

 Proximity and vision sensor simulation 

 Building block concept of building any model/sensor 

 Path and motion planning 
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 Custom user interfaces 

 Integrated edit modes, Data recording and visualizing, Model browser, Import/export, Full 

scene hierarchy viewer 

 RRS interface and motion library 

 

 

Starting: 

 

The command for starting up Vrep is as follows and is typed in the root directory of Vrep:  

 

$ ./vrep.sh

Simulation Environment:  

 

 

Fig 2.15 Vrep Simulation Environment 

The steps involved simulating a robot model in V-Rep: 

 

Step 1: Creating model file of the robot by setting up joints, link properties and saving it in .ttm 

format 

 

Step 2: Configuring dynamics properties and the controller setup 



24

 

Step 3: Attaching main script ad child script using Lua commander scripting  

 

Step 4: Configuring motion planning  

 

Step 5: Adding other objects to the simulation scene and saving the scene it in   .ttt format   

 

Step 6: Using any of the 6 API connection to tele operate the robot 

 

 

Creating a robot model (.ttm model file) 

 

There are three ways of using model file in V-Rep. One way is to use the existing models in models 

library. another way is to build a model from scratch using CAD models including all the mesh 

and dae files, applying joints/links, setting up parameter values, initializing suitable physics 

parameters. Third way is to use the URDF Plugin to import the model. 

Fig. 2.16 Vrep toolbars 

(Ref. www. coppeliarobotics.com) 
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Fig. 2.17 Robot model Vrep 

(Ref. www. coppeliarobotics.com) 

 

Setting joint/links parameters and setting up dynamics properties 

 

After loading the URDF model of the robot or you build CAD model adding meshes and DAE 

files, the various components of the robot can be viewed on scene hierarchy browser, one 

advantage of Vrep over gazebo or any other simulation software is that the robot model can be 

edited inside the Vrep simulation environment. The first step is to set properties of all movable 

joints to dynamic by enabling the motor and control loop.  

 

Main script and child scripts  

 

The default programming language used in Vrep is Lua. The main script and child scripts are 

written in Lua. Main script consists of code that runs the simulation, child scripts consists of code 

for each part of the robot. These two scripts are used to initialize the simulation environment and 

robot model parameters. 
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2.3 MACHINE LEARNING AND NEURAL NETWORKS 
 

2.3.1 Machine Learning 

It is an application of artificial intelligence whose main target is to make computer learn by 

themselves using some algorithms. There are 4 different types of machine learning: 

Supervised learning, Semi-supervised learning, Unsupervised learning and Reinforcement 

learning. Supervised learning: in this type of machine learning we train on labeled datasets and use 

algorithms to arrive at the target. In this type of machine learning, the targets are well known before 

starting training and the main objective is to use dataset and train appropriately to arrive at the 

target.  

Example: Classification, Regression 

 

Unsupervised learning: In this type of machine learning, unlabeled dataset is trained by suitable 

algorithms to predict some relation among the data. The main difference between this type of 

machine learning and supervised learning is that here the target is not fixed and not known to us. 

Example: Data segmentation 

 

Semi-supervised learning: This type of machine learning is the combination of both supervised 

and unsupervised learning.  

 

Reinforcement Learning: This type of machine learning differs from both supervised and 

unsupervised learning in the sense that here there is a goal to be achieved and set of possible actions 

to be taken are given and according to the type of actions taken a certain reward value is assigned. 

The main objective is to maximize the cumulative reward function. The algorithms work on a 
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feedback loop where at each state the reward value is assigned for each action performed taking 

into considerations of some constraints. 

Example: Trajectory following robot, Alpha GO 

2.3.2 NEURAL NETWORKS 

Neural networks are an inspiration from biological neural networks. Although the basic structure 

of computational neural network is analogous to biological neuron, still the computational 

complexity of biological neuron is far too high to reach or replicate. 

 

 

Fig. 2.18 Biological Neurons 

(Ref. cs231n.github.io) 

 

A biological neuron consists of a cell body with nucleus, dendrites, axon with axon terminals. The 

impulses are transferred in-between the neurons to pass the messages. The impulses from previous 

neurons are carried to the cell body through dendrites and passed on to next neuron through the 

axon. At cell body the impulses are processed. The cell body has a complex activation function.  

A computational neural network model, signals x0 are carried through axon interact 

multiplicatively with the dendrites  where w0 denote the synaptic strength which are 
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learnable parameters. The  is summed at the cell body and if the sum is greater than a 

threshold value, the cell body fires the neuron and is sent to another neuron through axon. The 

threshold function is called activation function. In computational neural network model, the exact 

timing of firing is not that important but the frequency of firing is computed.  

Neural networks have ability to detect patterns and derive information from complex data. Neural 

network works very differently from conventional computers. Conventional computers follow a 

set of instructions. It just acts as an arbitrary machine that follows instructions from humans. 

Neural network works similarly like human brain to process information.  

 

Fig. 2.19 Conventional model of Neurons 

(Ref. cs231n.github.io) 

 

Activation functions: 

Activations are used to define the thresholding value above which the neurons are activated and 

signals are sent to next neurons. Thresholding values compares the sum of product of parametrized 

weights and input. 
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There are 5 types of activation functions mainly used. 

1.Sigmoid:  

It is a non-linear function which takes a real valued number and squashes it in between 0 and 1 

Function: () = 1/(1 +  − )                                                                                                      (2.1) 

 

Fig. 2.20 Sigmoid Function 

(Ref. cs231n.github.io) 

 

2. Tanh:  

It is a non-linear function which takes a real valued number and squashes it in between -1 and 1 

Function: ℎ() = 2(2) − 1                                                                                                  (2.2) 

 

Fig. 2.21 Tanh Function 

(Ref. cs231n.github.io) 
 

 



30

3. ReLU: 

This activation function is thresholded at zero 

Function: () = (0, )                                                                                                              (2.3) 

 

Fig. 2.22 ReLU Function 

(Ref. cs231n.github.io) 

 

4.Leaky ReLU:  

It is very similar to ReLU but when x<0 this function has a small dip (negative slope).  

Function: () = 1( < 0)() + 1( >= 0)()                                                                           (2.4) 

 

Fig. 2.23 Leaky ReLU Function 

(Ref. cs231n.github.io) 
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5.Maxout:  

It is a nonlinear function on dot product of weights and inputs plus additional biases. Both ReLU 

and Leaky ReLU are special cases of this function.  

Function:(1 + 1,2 + 2) (2.5)

ReLU non-linearity function is mostly used as activation function. The next most probable choice is Leaky 

ReLU or Maxout, these two activation functions prevent the case of dying ReLU networks. 

 

History of Neural networks: 

The idea of neural networks was inspired from biological neural networks, when a scientist in 

1960s found out the possible working of a neuron and tried to build neurons in electrical circuits. 

Through the evolution of computers, scientists were able to apply the idea of neural networks. The 

main idea for this inspiration was based on the notion of creating thinking machines which led to 

development of artificial intelligent. 

The framework of neural network can be thought to be carried on from the linear function model 

of image classification problem. Image classification problem was aimed at classifying images 

based on class labels. In simple terms it aims at taking a random image and classifying it based on 

class labels defined. The initial strategies used were using Nearest Neighbor classifier and K 

Nearest Neighbor classifiers. Later, the model was shifted to a linear function mapping which 

consists of a function 

 ( ,, ) =W+b                                                                                           (2.6) 

where W denotes the weight parameters,    denotes input images and b denotes the bias 

This linear function maps the images to a confident score function. The parameters W and b are 

learnable parameters and can be adjusted to obtain a good result. The function is called a score 

function in general.  
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Fig. 2.24 Score Function Mapping 

(Ref. cs231n.github.io) 

 

Loss functions  

After the score function is defined, the next step is to control the weight and bias parameters so as 

to get a class score consistent with the class labels. In order to achieve this, we want to find the 

outcomes which are more likely and which are least likely. This can be done by computing a loss 

function to compute the value of loss.  

Types of Loss functions: Mean absolute loss, Mean squared loss, Root mean squared loss, 

SVM/Hinge loss, Softmax/Cross entropy loss. Loss functions can be classified into either 

Regression loss or Classification loss. 

 

The two types of Loss functions used commonly: 

 

1.Multiclass Support vector machine Loss (SVM Loss): 

The SVM loss function computes the value of Loss such that the score of correct class is above a 

certain margin of all other scores.  

 

The loss function is   = ∑
≠


(0,

 − 


  + )                                            (2.7) 
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Where Li denotes the sum of loss values of all incorrect classes for a score function, yi denotes the 

correct class score and yj denotes the current class score, Δ denotes the margin value,  is the j-

th row of W reshaped as a column 

The SVM loss is also called as the Hinge loss. 

 

2. Softmax Loss: 

Softmax Loss function is another popular and most commonly used loss function. It represents 

loss in a more understandable intuitive way and use probabilistic interpretation. 

The loss function is defined as 

 = −(




∑

)                                                                                                  (2.8) 

 or 

 = −
+ ∑

            (2.9)

Where   denotes the sum of loss value of all incorrect classes , 
 denotes the score function for 

correct class and  denotes the score function for current class  

The Softmax loss function is also called as Cross entropy loss function. 

 

Regularization loss: 

The one glitch that can be found while computing the loss function is that value of loss is same for 

two distinct values of weight parameters. In order to avoid this condition, L2 regularization loss 

term is added to the loss function, The L2 distance computes the square of difference between the 

values, the L2 regularization loss terms consists of only weight parameters and doesn’t include any

input term. 
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Optimization of loss 

After Loss is computed, the next step is to optimize the value of loss obtained. Optimization of 

loss can be achieved by computing gradient descent function. The gradient can be computed either 

analytically or by using calculus. The main idea behind using gradient descent is that it computes 

the value of slope of gradient that moves towards the below of the valley. The direction in which 

we move towards the least value also matters and can be set by tuning gradient descent step size.   

The batch size of neural networks can be huge and hence computing gradient descents can be 

difficult. Hence, the gradient descents are computed for mini-batch. Stochastic gradient descent is 

a special case of gradient descent which contains a single value.  

 

Back propagation: learning gradients and weights  

The main aim is to learn the controllable weight parameters. After optimizing the loss functions, 

we have to update the value of weights by back-propagating through the network. In other words, 

gradients back-propagate through the network and help us learn weights parameters. In order to 

understand the concept of back-propagation, we need to understand how gradients work and rules 

followed while we work with gradients. 

There are three main rules/gates followed while computing gradients: 

Add gate: Add gate takes the gradients of the outputs and distributes them equally to the inputs 

Max gate: Max gate distributes the gradients of outputs to exactly one of the inputs which had the 

highest value during forward pass 

Multiply gate: Multiply gate distributes the gradients of outputs to inputs in cross-distributed 

multiplication, like giving more gradients values to the inputs which had low values during forward 

pass and vice-versa. 
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Fig. 2.25 Back propagation 

(Ref. cs231n.github.io) 

 

Gradient updates 

While back-propagating through the network, gradients are computed. Gradient Descent can be 

very slow to run on large datasets. Because in one iteration of gradient descent, the algorithm 

requires a prediction of each instance in the training set and this can take a long time when there 

are millions of instances in the training set. In this situation, a variation of gradient descent called 

stochastic gradient descent is used. 

 

The procedure of stochastic gradient descent is same as gradient descent but the update to the 

weights is performed after each training instance or after a mini batch rather than the whole batch 

of training set as in gradient descent. The learning can be much faster using this algorithm for very 

large training datasets and often only a small number of passes through the dataset to reach a good 

accuracy. 
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Gradient Descent with Momentum

Gradient descent with momentum converges faster than the standard gradient descent algorithm. 

It can be seen that standard gradient descent takes larger steps in the y- direction and smaller steps 

in the x-direction. This algorithm will be able to reduce the steps taken in the y-direction and 

concentrate the direction of the step in the x-direction, our algorithm would converge faster. This 

is what momentum does, it restricts the oscillation in one direction so that the algorithm can 

converge faster. Also, since the number of steps taken in the y-direction is restricted, a higher 

learning rate can be set. 

 

 

 

 

Fig. 2.26 Gradient Descent 

(Ref. cs231n.github.io) 
 

RMSprop 

RMSprop was developed by Professor Geoffrey Hinton. It is similar to Gradient Descent with 

momentum. This algorithm restricts the oscillations in the vertical direction. Therefore, learning 

rate can be set to higher value. The difference between RMSprop and gradient descent is on how 

the gradients are calculated. The value of momentum is denoted by beta and is usually set to 0.9. 

 

Adam 

Adaptive Moment Estimation (Adam) combines ideas from both RMSprop and Momentum. The 

exponential average of the gradient as well as the squares of the gradient for each parameters is 

calculated. To decide our learning step, we multiply our learning rate by average of gradient and 
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divide it by the root mean square of the exponential average of square of gradients and then the 

weights are updated. The hyper parameter beta1 is generally 0.9 while beta2 is generally 0.99. 

Epsilon value is generally 1e-10. 

 

Architecture of Neural Networks 

Types of Neural networks: Feedforward and Feedback networks 

Feedforward networks are straight networks that carry input in one direction. They associate the 

inputs directly with the output. Feedback networks are complex networks which contain 

intermediate states that vary throughout the process. These networks are very powerful. Feedback 

networks are also called as Recurrent Neural Networks. 

 

Layers/Groups of Neural networks: 

Input, Hidden and output 

Input layers contains the input units containing raw information 

Hidden layers contain hidden units connecting the input and output layers 

Output layers contain units which are the result  

 

Neural networks can also be classified based on single-layer or multi-layer neural networks. Neural 

networks are called as either artificial neural networks or single-layer/multi-layer perceptron 

interchangeably. 

 

Fully Connected Neural Network  

A full connected neural network is the otherwise called simply neural network is a network in 

which all the layers are connected in entirety with each other. It consists of an input layer, no of 

hidden layers and an output layer. In general, the number of hidden layers is 2 or 3, increasing the 
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number of hidden layers beyond 3 can bring about voluminous amount of parameters which can 

be difficult to handle. One drawback of fully connected layers is that when input is too big the 

number of parameters at each layer would proportionately be too high to deal with, this restricts 

the size of inputs of fully connected layers.  

 

Convolutional Neural Networks 

A Convolutional neural network differs from a fully connected neural network. In this type of 

neural network, the layers are not entirely connected with each other as in a fully connected neural 

network. Each layer is convolved with another layer using an appropriate filter size, pooling layers 

and stride of filter. Convolutional neural network also consists of input layer, hidden convolution 

layer, ReLU activation layers, Maxpool layers and fully connected output layers. Neurons in 

Convolutional neural networks differ from that of fully connected neural networks. Neurons are 

described by a 3 dimensional ℎ ∗  ∗  value (height width and depth). 

 

Recurrent Neural Networks 

A recurrent neural network is different from the feedforward neural network in the sense it has a 

feedback loop. The recurrent neural networks are otherwise called as feedback neural networks, 

which has a complex structure and can be used for powerful computation with respect to memory 

considerations. The memory part of recurrent networks plays an important role, which is achieved 

by monitoring each intermediate state in each loop. This attribute of recurrent neural network well 

distinguishes it from feedforward neural network. The RNNs can easily learn and predict time 

series of numbers, any patterns. The RNNs have wide range of application when it comes to 

predicting time series sequence as it gives importance to the intermediate state. 
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The greatest disadvantage of Recurrent neural networks is that the gradients computed during back 

propagation can be either over exponentially increasing or vanishing. When the gradients are 

exceedingly increasing, it is very hard to compute the number of parameters that can be involves 

and similarly when the value of gradients are vanishing beyond a certain value, the neural nitrogen 

wouldn't be able to detect any concrete changes. It is easier to deal with exploding gradients then 

vanishing gradients. 

 

Long short term memory neural networks 

Long short term memory network is also a recurrent neural network. It was found in the year 1997. 

It gives the solution for the problem of increasing/vanishing gradients. It has four gates in its 

structure: Input gate, gate gate, output gate, flag gate. These gates facilitate the amount of 

information to be stored, deleted, retrieved. LSTMs have proven to be very useful in predicting 

time series prediction. One drawback of LSTM would be that it only takes into account the 

probabilities of state rather than the actual value of state.  

 

Training Neural network 

1.Preprocessing  

The most important step in training neural network is to preprocessing the input, it saves a lot of noise 

occurring in the network and cut down the possible errors. Some of the methods used in Preprocessing are 

Mean subtraction, Normalization, PCA and whitening. 

2.Weight Initialization 

Another most important to take care before training is to set the initial value to weights. Setting weights 

equal to zero is not ideal as it can lead to easier fading out of networks, also uniform initialization of weights 

is not good, since all the inputs parameters will be equally affected. The most ideal way to initialize weights 
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is to have a very low random value. The most common method used for initializing weights is Xavier 

Initialization. 

3.Learning and evaluation 

After initialization and preprocessing, next step is to start learning. The dataset is used as input to 

train and test neural network. The dataset is split into two parts, namely train and test. The train 

data contains data with known output, the model learns on this data to generalize. The test data is 

a subset of the entire dataset which is used to find model’s prediction and efficiency for the test

subset. Generally, the model is first trained on train dataset and later is tested on test dataset.  

4.Hyper-parameter optimization 

One important step about training neural network model is hyper-parameter optimization. Hyper-

parameters are variables which change over the course of training neural networks. These 

parameters are learnable and play an important role in shaping the neural network model.  

 

Architecture of Neural network and specifications 

 

Fig. 2.27 Neural network architecture 

Weight Initialization: Xavier Initialization  

Optimizer: ADAM Optimizer 
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Encoder: 5 convolutional layers and 1 dense layer 

Decoder: 5 convolutional layers and 1 dense layer  

Loss function: Maray cross entropy 

Activation Function: ReLU non linearity 

Train dataset: 400  

Test dataset: 100 

No of images per folder: 15 
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CHAPTER 3 

SCOPE OF PRESENT WORK 

 

In this section, the present scope of the project will be elaborated. The detailed description of 

applications where and how the project can be implemented is explained.  

 

The main objectives of the project are  

1. To understand the interaction of a Robotic arm with its environment by understanding the 

underlying physics 

2. To manipulate the Robotic arm to build and break a tower of blocks by grasping the boxes 

3. To record images containing the pose and orientation of the boxes during the process of 

building and breaking the tower  

4. To train and test a Recurrent neural network to predict the future possible state of the blocks 

using the images recorded 

 

The project aims in establishing an interaction of the Robot with its surrounding environment by 

understanding the physics. Various position, orientation and depth map of objects are captured as 

images. Images are processed to obtain a concrete dataset for further training with a neural network 

to predict states at future sequence through machine learning algorithms. The project is 

amalgamation of Robotics, Machine learning and Computer vision put together to achieve Self 

Learning of the robot. The concept behind Self learning is self-explanatory as the name suggests. 

It forms the first step of any learning. Human babies try to learn to walk or pick any object by 

various trial and errors through self-learning. The analogy between human babies and robots can 

be brought about in this way. The project is based on Human like robots or Humanoid Robots. The 
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core principle of Humanoid robotics is to make robots mimic and understand the environment like 

human beings do. The various primary tasks that can be achieved by Humanoid robots are moving, 

picking, placing, grasping, lifting, rotating. They can be used to do routine tasks in factory, tasks 

in a nuclear research environment that are harmful for human being like disposal of nuclear waste, 

complex tasks. The quality that differentiates humanoid robot from other type of robots is the 

intelligence or the ability to learn by understanding the environment. 
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CHAPTER 4 
 
 

 

EXPERIMENTAL PROCEDURE

The project consists of two parts:  

1. Simulating a 7 Degrees of Freedom Panda arm of Franka Emika Robot in a Gazebo/V-rep 

Simulation environment, to make it repeatedly build and break a tower of blocks. 

2.  Recording color images, depth map containing pose and orientation of blocks to generate a 

dataset of images which is used in training a Recurring Neural Network for predicting the next 

sequence denoting the position and orientation of the blocks. 

 

4.1 Building and breaking a tower of blocks  

4.1.1 Pre-requisites  

The most important need for simulation is a very good simulation environment with good physics 

engine built-in. The simulation software must be able to replicate the physics properties of the real 

world. It must also be able to provide with huge variety of models starting from simple primitive 

shape to complex robots. The simulation environment must also be equipped with easy navigation, 

controlling, editing, tuning parameters, adjusting kinematic and dynamic properties of objects. It must 

lay down a framework for setting up controllers to control various parts of the robot model. It is also 

essential to integrate the simulation environment with ROS by adding suitable services and messages. 

Gazebo simulation and V-rep simulation are good simulation environments with all the above pre-

requisites. They both have 4 built in physics engine and huge model browser and ability to 

import/export models in SDF/URDF format. Both Gazebo and V-rep can be integrated with ROS. 

Gazebo has separate gazeboros packages and gazeboros control which can be downloaded and built 
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with catkin. In Vrep, ROS integration can be achieved by using downloading vrep_ros_inteface 

package and building with catkin by again adding suitable services and messages.  

 

4.1.2 Pre-Processing 

The steps involved in pre-processing are briefly explained below: 

Step 1: Importing Franka model  

Importing Franka Emika model with Gazebo/Vrep involves importing the associated URDF script  

 

<?xml version="1.0" ?> 

<robot name="panda" xmlns:xacro="http://www.ros.org/wiki/xacro"> 

  <link name="panda_link0"> 

    <visual> 

      <geometry> 

        <mesh filename="package://Panda/meshes/collision/link0.obj"/> 

      </geometry> 

      <material name="panda_white"/> 

    </visual> 

    <collision> 

      <geometry> 

        <mesh filename="package://Panda/meshes/collision/link0.obj"/> 

      </geometry> 

      <material name="panda_white"/> 

    </collision> 

  </link> 

  <link name="panda_link1"> 
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    <visual> 

      <geometry> 

        <mesh filename="package://Panda/meshes/collision/link1.obj"/> 

      </geometry> 

      <material name="panda_white"/> 

    </visual> 

    <collision> 

      <geometry> 

        <mesh filename="package://Panda/meshes/collision/link1.obj"/> 

      </geometry> 

      <material name="panda_white"/> 

    </collision> 

  </link> 

  <joint name="panda_joint1" type="revolute"> 

    <safety_controller k_position="100.0" k_velocity="40.0" soft_lower_limit="-2.8973" 

soft_upper_limit="2.8973"/> 

    <origin rpy="0 0 0" xyz="0 0 0.333"/> 

    <parent link="panda_link0"/> 

    <child link="panda_link1"/> 

    <axis xyz="0 0 1"/> 

    <limit effort="87" lower="-2.9671" upper="2.9671" velocity="2.1750"/> 

  </joint> 

  <link name="panda_link2"> 

    <visual> 
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      <geometry> 

Fig. 4.1 Franka Panda URDF file 

The above URDF file is a part of Panda.urdf file used for panda model.  

The panda robot consists of an arm with 7 joints and links attached with a hand having a left and right 

joint and links 

Step 2: Setting up the Work table, Camera, cardboard box 

 

Fig. 4.2 Work cell assembly with kinect camera SDF file 

Step 3: Adding the models to world/scene  

In gazebo, after models are imported they are added into world file. The gazebo server parses the 

world file and gazebo graphical enables users to visualize the elements. 

world file: 

<?xml version="1.0" ?> 

<sdf version="1.4"> 

 <world name="default"> 

 <scene> 

        <ambient>0.0 0.0 0.0 1.0</ambient> 
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        <shadows>0</shadows> 

    </scene>  

    <include> 

      <uri>model://ground_plane</uri> 

    </include> 

    <include> 

      <uri>model://sun</uri> 

      <pose>0 0 0 0 0 0</pose> 

    </include> 

    <include> 

      <uri>model://open-cardboard-box</uri> 

      <pose>0.820397 0.656998 0.972500 0 0 0</pose> 

    </include> 

    <include> 

      <uri>model://box</uri> 

      <pose>0.84 0.67 1.02 0 0 0</pose> 

    </include> 

    <include> 

      <uri>model://box1</uri> 

      <pose>0.84 0.67 1.14 0 0 0</pose> 

    </include> 

    <include> 

      <uri>model://box2</uri> 

      <pose>0.84 0.67 1.26 0 0 0</pose> 

    </include> 



49

    <include> 

      <uri>model://box3</uri> 

      <pose>0.84 0.67 1.38 0 0 0</pose> 

    </include> 

    <!--include> 

      <uri>model://Brick</uri> 

      <pose>19 0.5 1.2 0 0 0</pose> 

    </include> 

    <include> 

      <uri>model://Concrete_Roadblock</uri> 

      <pose>20 0.5 1.2 0 0 0</pose> 

    </include-->     

    <include> 

     <uri>model://workcell-assembly-v2-kinect</uri> 

      <name>workcell-assembly-v2-kinnect</name> 

      <pose>0 0 0 0 0 0</pose> 

    </include> 

  </world> 

</sdf> 

Fig. 4.3 Gazebo World file 

In Vrep, all models are added into the scene hierarchy browser dialog box manually which also 

enables us to view /edit properties of each sub-element. 
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Fig 4.4 Scene Hierarchy Browser 

Step 4: Setting up Dynamic properties and controllers in Vrep/ Gazebo 

In Gazebo, the dynamic and controller’s configuration are setup using MoveIt setup assistant  

Fig. 4.5 MoveIt! Setup Assistant 

(Ref. www. moveit.ros.org) 
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In Vrep, after a robot model is imported, it is required to setup each joint as dynamic and selecting 

suitable controller and enabling the control loop. One important step before this would be to check 

the scene hierarchy.  

 

Fig. 4.6 Dynamics Properties Dialog box 

Step 5: Attaching script  

In Vrep, it is required to add a main script to specify to initialize parameters and setting up control 

loop signals and a threaded/non threaded child script for each part of the robot specifying its position, 

orientation, object name, object handle. 
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Fig. 4.7 Main Script 

 

Fig. 4.8 Panda_arm child script 

 

In Gazebo, the URDF file along with suitable scripts are added to launch file along with description 

file. On launching the launch file, the gazebo simulation environment is opened along with the world 

file containing the models. 
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Launch file:

<launch> 

<env name="GAZEBO_MODEL_PATH" value="$(find 

franka_arm_gripper_realsense_gazebo_description)/model:$(find 

franka_arm_gripper_realsense_gazebo_description)/props_models:$(optenv 

GAZEBO_MODEL_PATH)" /> 

    <!-- Launch Gazebo --> 

    <include file="$(find gazebo_ros)/launch/empty_world.launch"> 

        <arg name="world_name" value="$(find 

franka_arm_gripper_realsense_gazebo_description)/worlds/sim_scenario#3.world"/> 

        <arg name="paused" value="false"/> 

        <arg name="use_sim_time" value="true"/> 

        <arg name="gui" value="true"/> 

        <arg name="recording" value="false"/> 

        <arg name="debug" value="false"/> 

        <arg name="physics" value="ode" />  

    </include> 

    <!-- Generate/Load robot description file --> 

    <include 

file="$(findfranka_arm_gripper_realsense_gazebo_description)/launch/description.launch"/> 

    <!-- Spawn urdf into Gazebo --> 

    <node name="spawn_urdf" pkg="gazebo_ros" type="spawn_model" args="-param 

robot_description -urdf -model arm gripper" /> 



54

        <node name="record_topics_for_verification" pkg="rosbag" type="play"    args=" 

/home/uthira/catkin_ws/src/franka_active_sensing/franka_arm_gripper_realsense_gazebo_descript

ion/scripts/pointclouds.bag" output="screen"> 

    <param name="use_sim_time" value="true" /> 

    <remap from="/kinect_camera/depth/points" to="/kinect_camera/depth/points2"/> 

        </node> 

        <!-- Start moveit node --> 

    <include file="$(find arm_control)/launch/moveit.launch"/> 

            <!-- start rviz node --> 

    <include file="$(find arm_control)/launch/rviz.launch"/> 

        <!-- run init object models script --> 

    <!--node pkg="franka_arm_gripper_realsense_gazebo_description" name="init_models" 

type="init_models.py" output="screen"> 

        </node--> 

    </launch> 

Fig. 4.9 Launch file 

 

Fig. 4.10 Roslaunch main launch  
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Step 6: Adding boxes 

The most important step involved would be to define the properties of box which is used for making 

and breaking the tower. In gazebo, we define SDF file of each box which is used in simulation and 

boxes are included along with the world file. 

SDF file: 

 <?xml version='1.0'?> 

 <sdf version ='1.6'> 

   <model name ='box'> 

     <pose>0 0 0 0 0 0</pose> 

     <static>false</static> 

     <link name ='link'> 

     <inertial> 

        <mass>5.0</mass> 

        <inertia> <!-- inertias are tricky to compute --> 

          <!-- http://gazebosim.org/tutorials?tut=inertia&cat=build_robot --> 

          <ixx>0.083</ixx>       <!-- for a box: ixx = 0.083 * mass * (y*y + z*z) --> 

          <ixy>0.0</ixy>         <!-- for a box: ixy = 0 --> 

          <ixz>0.0</ixz>         <!-- for a box: ixz = 0 --> 

          <iyy>0.083</iyy>       <!-- for a box: iyy = 0.083 * mass * (x*x + z*z) --> 

          <iyz>0.0</iyz>         <!-- for a box: iyz = 0 --> 

          <izz>0.083</izz>       <!-- for a box: izz = 0.083 * mass * (x*x + y*y) --> 

        </inertia> 

      </inertial> 

      <collision name="collision"> 

        <geometry> 
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          <box> 

            <size>0.07 0.07 0.07</size> 

          </box> 

        </geometry> 

      </collision> 

      <visual name="visual"> 

        <geometry> 

          <box> 

            <size>0.07 0.07 0.07</size> 

          </box> 

        </geometry> 

        <physics type="ode">          

         <real_time_update_rate>1000</real_time_update_rate> 

        </physics>   

        <material>  

          <ambient>0 0 0 0</ambient> 

          <diffuse>1 0 0 1</diffuse> 

          <specular>0 0 0 0</specular> 

          <emissive>0 0 0 0</emissive> 

        </material>   

      </visual> 

      </link> 

  </model> 

</sdf> 

Fig. 4.11 Box SDF file 
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In Vrep, we initialize the boxes by setting up their properties in run-time by calling import shape script 

using remote API server. 

 

Fig. 4.12 Remote API Server script 

 

Fig. 4.13 Adding Objects Script 
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4.1.3 Simulation

Python script is called for enabling connection to Vrep API server. When this script is executed, the 

connection to the remote server is established, the robot gripper is initialized, the boxes are instantiated 

into the Vrep environment. Using two functions grasp and push, the boxes are grasped to build a tower 

of blocks and pushed to break them by gripper by properly configuring the position and orientation 

of gripper.  

 

 

Fig. 4.14 Grasp function 
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Fig. 4.15 Push function 

 

4.1.4 Post Processing/Fine-Tuning  

The grasp action is fine-tuned by changing the pose of the gripper suitably by considering both 

position and orientation. 

 

Fig. 4.16 Push to function 
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The push action is fine-tuned by defining the push direction in all directions and push length and 

orientation. 

 

 

Fig 4.17 Push direction script part 

 

4.2 Training with Recurrent Neural Network  

4.2.1 Pre-requisites 

The most important pre-requisite for training any neural network is the dataset on which it will train. 

There is huge requirement of good datasets for testing many machine learning algorithms. A good 

dataset should have characteristics that are matching with the requirement. There are many datasets 

The datasets sometimes come with ground truth which signifies the absolute correct value. There are 

some scenarios for which generating datasets with labels is difficult. In such cases existing dataset 

models are combined to give a custom made dataset model like flying chairs dataset. In this project 

the dataset consists of images generated from Gazebo simulation environment. These images are 

obtained when random force are applied to tower of 4 different blocks and the images contain different 

position and orientation of the blocks. 
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4.2.2 Pre-processing

 The steps involved in Preprocessing are briefly explained below: 

Step 1: Getting the Image Dataset from Gazebo Simulation  

Image datasets are obtained from Gazebo simulation from Kinect Camera installed in the Franka robot 

work-cell assembly. The Kinect camera is located at the top of the work-cell assembly and thus all 

images are top-view images. A Kinect camera has sensor_msgs/raw_image topic publishes image 

which are subscribed by a subscriber, the subscribed images are then converted to cv format and stored 

in folders. 

 

Fig. 4.18 Apply random force function 1 
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Fig. 4.19 Apply random force function 2 
 

 

Fig. 4.20 Recording Images 

Step 2: Resizing/preprocessing the images 

The images obtained from the Gazebo simulation are resized or preprocessed to fit the requirements 

of the training framework. 
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Fig.4.21 code for resizing 

4.2.3 Annotating input images to obtain label images  

The dataset of images was annotated to obtain ground truth image labels. The label images were 

obtained by image segmentation by using color. The concept of image segmentation implemented 

gets the color channel indices of images which are distinct and assigned a suitable color class label. 

 

 

Fig.4.22 code for labelling images 



64

4.2.4 Training, Testing and Evaluation

The dataset of images was split into train dataset and test dataset. The train dataset consisted of 400 

iterations of images stored in train folder. The test dataset consisted of 100 iterations of images stored 

in test folder. The neural network was trained initially with few iterations ad epoch lengths and slowly 

the number of iterations were increased. In each epoch, the value of loss was calculated and at the end 

of each iteration the average loss was computed. The loss value must converge as we increase the 

number of iterations. This indicates that the neural network is learning some parameters. After getting 

a good accuracy after training, the neural network is tested on test dataset and final value of accuracy 

was calculated. Train dataset and test data test consists of observations and targets. The observations 

denoted the input image and targets denote the ground truth label images. The loss function is 

calculated by comparing the observations and targets during training and by comparing test targets 

and prediction values during evaluation. 

 

Fig. 4.23 Training 

 

4.2.5 Tweaking parameters 

After preprocessing the dataset and annotating the dataset to obtain labels, the neural network is 

trained and subsequently tested. The most important part of training neural networks is to optimize 

the loss functions. The loss functions are optimized by using ADAM optimizer function by computing 

stochastic gradient descent. The weight parameters are updated by gradient values through back 
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propagation. The loss function can be reduced by increasing the parameters in each layer of 

convolutional layer, by tuning the learning rate and step size, by increasing the number of layers in 

encoder or decoder, by changing the loss function type, by introducing a Softmax layer at the end of 

the network to obtain the probability of class labels. Hyper parameter optimization is very interesting 

and challenging of training any neural network, it involves engineering the most suitable way to 

reduce the loss function and obtain maximum accuracy of prediction. There are lot of methods 

available for tweaking the neural network and most of times it is done by trial and error methods. The 

efficiency of computer scientist lies in the way they engineer the aspects of tweaking the neural 

network to obtain the optimum result. 

4.2.6 Calculating prediction accuracy 

The pixel wise prediction accuracy is obtained by comparing the maximum value of color channel 

indices corresponding to test target labels and prediction labels. The accuracy is computed as the mean 

of sum of absolute difference of maximum value of prediction and test target labels for all the labels 

greater than 0 divided by the sum of maximum value of labels. 
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CHAPTER 5 
 
 

RESULTS AND DISCUSSION 
 
 

5.1 Simulation Results 

 
The Franka Emika Panda arm was simulated with Gazebo simulation environment by creating a 

world file consisting of Franka panda model, work cell-assembly, Kinect camera, 4 boxes of 

different color. URDF file of panda arm and gripper was integrated to form a single URDF Xacro 

file. The SDF file of all other components were included through the world file. All other scripts 

were attached; launch file was created. The gazebo was interfaced with ROS, RViz and MoveIt. 

The motion planning was achieves using OMPL with a FAST IK solver. The controllers were 

setup using MoveIt setup assistant. There are 3 controllers for panda, namely arm controller, hand 

controller, joint space controller. The move group node is interfaced with ROS and gazebo for 

setting up controllers. 

 

Fig. 5.1 Franka Panda Setup in Gazebo 
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There was some error when initializing hand controller. The action command was unable to get 

connected to the hand controller. Hence, it was difficult to control the gripper of Panda robot in 

Gazebo to manipulate the boxes to build and break a tower of breaks. 

Following the issue with hand controller in Gazebo, another simulation environment V-Rep was 

used for simulating UR5 to build and break a tower of blocks. The code for simulation was inspired 

from Andy Zeng Visual grasping and pushing toolbox7. The idea was modified to make the UR5 

robot grasp and push blocks. Using grasp and push functions, the UR5 robot was made to build 

and break a tower of blocks.  

In order to build a tower of blocks, the robot has to first identify the position and orientation of 

blocks. The tower consists of 4 blocks, out of which one block is assigned as a base block. All the 

other blocks have to be placed on the top of the base block one by one. Building a tower involves 

first opening the gripper, moving to the position of the object, closing the gripper when the block 

is in between the gripper, move the gripper above the location of target and moving the gripper to 

the position above the base block. One important thing is to make the gripper align the orientation 

of block it is taking to the base block in order to make the tower more stable. The breaking of 

tower is very simple and only involves push action of the gripper. The gripper needs to be fully 

closed and be placed near to the tower and move in the indirection of the tower. The push action 

is performed in 4 directions: top, down, right, left.  
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Fig.5.2 UR5 building a tower 1                              Fig.5.3 UR5 building a tower 2 

 

Fig.5.4 tower of blocks                                  Fig.5.5 UR5 breaking a tower 

Franka panda robot was also simulated in V-rep simulation environment. The Franka robot URDF 

file was imported and joints/links parameters were initialized. The dynamics properties of the 

various joints and other objects were setup. The workspace of the Franka Panda was setup. The 

boxes were initialized using Remote API server using import shape function. The Franka panda 

was manipulated to perform Push actions and Grasp actions. The idea of pushing and grasping 

implemented for UR5 was used for Franka Panda. The Franka Panda was successful in pushing 

action with some issues with grasping action.  
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Fig. 5.6 Franka Panda Setup in V-Rep 

 

5.2 Sequence Prediction Results  
 

Images of blocks where recorded when the tower of blocks was being broken by applying random 

force in X and Y directions. The images recording started at the moment of application of force 

and recorded for a couple of seconds for 500 iterations and stored in folders. These images were 

used as a dataset for training a recurrent neural network namely long short term memory neural 

network for predicting subsequent sequences of blocks position and orientation. 

The images were preprocessed by resizing to fit the requirements of neural network. The 

architecture of neural network consists of a down sampling convolutional encoder layers, a LSTM 

transition cell followed by an up sampling convolutional decoder layers and a Softmax layer. The 

input images were annotated by creating label images. Image segmentation was used to annotate 

the input image to create image labels. The input images dataset was split into train and test dataset. 

The train dataset was trained for number of iterations and the neural network model was tested on 

test dataset. The output image is also a label image which maps the color classes of the 4 different 
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blocks. The model was trained for 10 iterations containing 30 epochs each. The loss function used 

was maray cross entropy loss. The optimizer used was ADAM optimizer. The activation used is 

ReLU non-linearity function. The accuracy of prediction was calculated by comparing the test 

target labels and prediction results. 

OBSERVATIONS 

 

Fig. 5.7 Prediction results

In the above image, the observations are 3 image samples from the input dataset, the labels are

annotated images corresponding to the 3 sample input images, the predictions are output images for

LABELS 

PREDICTIONS 
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each of the 3 sample label. The predicted image is the next image in sequence for a given labelled

image.

Table 5.1 Prediction accuracy

The table above shows the value of train and test accuracies for 10 iterations containing 32 epochs

each. The value of test and train accuracy are almost similar, yet the performance of the model is

not fully efficient. This may be due to noise variations present in the input image.

ITERATIONS TRAIN ACCURACY TEST ACCURACY

1 40.378292 42.90274

2 41.350796 43.704166

3 41.197277 43.371964

4 41.123024 42.86047

5 40.305782 42.35727

6 39.995853 42.213898

7 41.725925 43.460625

8 40.223236 42.110325

9 40.98449 42.345097

10 41.82094 43.3392
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CHAPTER 6 
 
 

 

CONCLUSION 

 

 

The project is an interdisciplinary project covering basic physics, robotics, machine learning, 

python programming, computer vision, neural networks. The project tests the basic understanding 

of concepts and application skills of a person. It is very interesting and challenging to learn, 

understand all the concepts and implement combining all the disciplinarians. The project is a prior 

to anyone who wants to pursue a carrier in robotics, machine learning. The project paves a road 

for aspirants trying to design and simulate humanoid robots. Various problems of manipulation 

were taken into account and corresponding logic were programmed to manipulate the robot. The 

hyper-parameters of neural network architecture were tweaked and engineered to train and test the 

dataset to obtain predictions to the maximum accuracy possible.  

FUTURE SCOPE 

 Implementing the Franka panda robot full work cell assembly in V-Rep 

 Predicting the sequences using advanced versions of Long short term memory network 

 Learning push, grasp actions using Reinforcement learning algorithms 

 Implementing building and breaking of tower in real time  
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